C.U.SHAH UNIVERSITY Summer Examination-2017

Subject Name: Elements of Mechanical Engineering

	Subject (Code: 4TE01EME1 Branch: B.Tech	All)	
	Semester Instructio	r: 1 Date: 28/03/2017 Time:10:30 To 1:	30 Marks: 70	
	 (1) U (2) In (3) D (4) A 	Use of Programmable calculator & any other electronic Instructions written on main answer book are strictly to Draw neat diagrams and figures (if necessary) at right pl Assume suitable data if needed.	instrument is prohibited. be obeyed. aces.	_
Q-1		Attempt the following questions:	(14)
	a)	Compressor & Turbine is an example of (a) Open system (b) Closed system (c) Isolated system	(d) All of these (e) None	01)
	b)	Wetness fraction of steam is equal to (a) $x-1$ (b) x	(c) 1-x (d) 1 (e) 0 (e)	01)
	c)	In the engine, working on diesel cycle, the heat is supp (a) Constant temperature (b) Constant volume (c) Con-	blied at (finite constant (finite consta	01)
	d)	Babcock & Wilcox boiler is a type ofboiler. (a) Fire tube (b) Low pressure (c) Water tube (d) Ver	tical tube (e) All of these	01)
	e)	The chemical formula of Freon 12 (R12) is (a) CCl_2F_2 (b) $CClF_3$ (c) $CCl_{12}F$ (d) $CHClF_2$	()	01)
	f)	The clearance ratio is defined as the ratio of (a) clearance volume to cylinder volume (b) swept vol (c) clearance volume to swept volume (d) cylinder vol	() ume to clearance volume ume to clearance volume	01)
	g)	Heat is rejected by a refrigerant during a refrigeration cycle (a) Evaporator (b) Condenser (c) Throttle Valve (d) Compr	in a (lessor	01)
	h)	The type of brake widely used in automobiles is (a) Cone brake (b) Centrifugal brake (c) Internal expandent band brake	(ding shoe brake (d) Simple	01)
	i)	The average overall thermal efficiency of diesel engin (a) 15% (b) 76% (c) 65% (d) 36% (e) 50%	e is (01)
	j)	Absolute zero temperature is 0 C (a) 0 (b) 273 (c) -273 (d) 100	()	01)
	k)	The efficiency of carnot cycle is (a) $1-T_1/T_2$ (b) $1-T_2/T_1$ (c) $1+T_1/T_2$ (d) $1+T_2/T_1$	()	01)
	l)	The performance of a boiler is measures by (a) Amount of water evaporated/hr (b) Steam product (d) None of these	ed in kg/hr (c) All of these (01)
	m)	For same compression ratio, the thermal efficiency of otto	cycle isdiesel cycle.	01)

(a) Greater than (b) Less than (c) Equal to (d) Not depends on (e) Two times

Page 1 || 2

	n)	C_p - C_v is equal to (a) 0 (b) n (c) R (d) R_v (e) γ	(01)	
Atten	npt any f	four questions from Q-2 to Q-8		
Q-2	a)	Attempt all questions Explain Zeroth law of thermodynamics and First law of thermodynamics & write the limitations & explications of First law of thermodynamics		
	b)	Discuss various types of non-flow processes and derive PV^{γ} =constant, where $\gamma = Cp/Cv$	(07)	
Q-3		Attempt all questions		
-	a)	Define dryness and wetness fraction of steam and explain with neat sketch any one type calorimeter used for the measurement of dryness fraction.		
	b)	Steam at 8 bar and dryness of 0.9 expand at constant pressure until the dryness fraction is 0.6. calculate the work done and heat removed per kg of steam during the process.(From steam table at 8 bar, $h_{f1} = h_{f2}$ 720.94 KJ/Kg, $h_{fg1} = 2046.5$	(07)	
		$KJ/Kg, v_{g1} = v_{g2} = 0.24026 \text{ m}^3/Kg)$		
Q-4		Attempt all questions		
	a)	Discuss briefly Otto cycle with the help of P-V diagram and derive an expression for the ideal efficiency of Otto cycle.	(07)	
	b)	In an air standard Otto cycle the maximum and minimum temperatures are 1400 $^{\circ}$ C and 15 $^{\circ}$ C. The supplied per kg of air is 800 kJ. Calculate the compression	(07)	
0.5		ratio and cycle efficiency. Take $C_v = 0.718 \text{ kJ/kg-K}, \gamma = 1.4$		
Q-5	a)	Attempt all questions Differentiate between fire tube boiler & water tube boiler with examples & write advantages of water tube boiler over fire tube boiler.		
	b)	List various mountings and accessories and explain any one mounting with neat labelled diagram.	(07)	
Q-6		Attempt all questions		
	a) b)	Write the comparison between two stroke and four stroke cycle engines. During testing of single cylinder two stroke oil engine, following data were	(07) (07)	
		obtained. Brake torque = 640 N-m, cylinder diameter = 21 cm, speed = 350 rpm, stroke = 28 cm, mean effective pressure = 5.6 bar, oil consumption = 8.16 kJ/hr, calorific value= 42705 kJ/kg. Determine (i) mechanical efficiency (ii) indicated thermal efficiency (iii) brake thermal efficiency (iv) specific fuel consumption.		
Q-7		Attempt all question		
	a) b)	Explain types of governing of I C engine. What is the function of a pump? Explain with neat sketch, working of centrifugal Pump	(07) (07)	
0-8		Attempt all questions		
t °	a) b)	Classify various types of coupling and explain Oldham coupling with neat sketch.	(07) (07)	

b) Define refrigeration and types of refrigerant and explain with a neat sketch, (07) describe the working of vapour compression refrigeration.

Page 2 || 2